Home | Site Map | What's New | Image Index | Copyright | Posters | ScienceViews | Science Fiction Timelines |

PHOTO INDEX OF
PRIMARY TARGETS
ASTEROIDS
COMETS
EARTH
JUPITER
KUIPER BELT
MARS
MERCURY
METEORITES
NEPTUNE
OORT CLOUD
PLUTO
SATURN
SOLAR SYSTEM
SPACE
SUN
URANUS
VENUS
ORDER PRINTS

OTHER PHOTO INDEXES
ALL TARGETS
PHOTO CATEGORIES

SCIENCEVIEWS
AMERICAN INDIAN
AMPHIBIANS
BIRDS
BUGS
FINE ART
FOSSILS
THE ISLANDS
HISTORICAL PHOTOS
MAMMALS
OTHER
PARKS
PLANTS
RELIGIOUS
REPTILES
SCIENCEVIEWS PRINTS

Hubble Provides the First Images of Saturn's Aurora

Target Name:  Saturn
Spacecraft:  Hubble Space Telescope
Produced by:  STScI/NASA
Copyright: Public Domain
Cross Reference:  STScI-PRC95-39
Date Released: October 10, 1995

Related Document
Download Options

NameTypeWidth x HeightSize
sataur.gifGIF600 x 750130K

(Top) - This is the first image ever taken of bright aurorae at Saturn's northern and southern poles, as seen in far ultraviolet light by the Wide Field and Planetary Camera 2 aboard NASA's Hubble Space Telescope. Hubble resolves a luminous, circular band centered on the north pole, where an enormous auroral curtain rises as far as 1,200 miles (2,000 kilometers) above the cloudtops. This curtain changed rapidly in brightness and extent over the two hour period of our HST observations, though the brightest emissions remained at a position fixed in sun angle, near "dawn" in the north auroral band. The image was taken on October 9, 1994, when Saturn was at a distance of 831 million miles (1.3 billion kilometers) from Earth.

The aurora is produced as trapped charged particles precipitating from the magnetosphere collide with atmospheric gases -- molecular and atomic hydrogen in Saturn's case. As a result of the bombardment, Saturn's gases glow at far-ultraviolet wavelengths (110-160 nanometers) which are absorbed by the Earth's atmosphere, and so can only be observed from space-based telescopes. Saturn's magnetic field is nearly perfectly aligned with the planet's rotation, giving the auroral "ring" its symmetry centered on the pole. (The southern aurora is faintly visible in this view despite the fact that Saturn's northern pole is now tilted slightly toward Earth.)

The Hubble images demonstrate our capability to record from the Earth the auroral brightness and distribution about Saturn's poles, which will ultimately complement the in situ measurements of Saturn's magnetic field and charged particles to be made by the NASA/ESA Cassini spacecraft near the turn of the century.

Study of the aurora on Saturn had its beginnings a few decades ago. The Pioneer 11 probe observed a far-ultraviolet brightening on Saturn's poles in 1979. Beginning in 1980, a series of spectroscopic observations by the International Ultraviolet Explorer (IUE) have sporadically detected emissions from Saturn's auroral zones. The Saturn flybys of the Voyager 1 and 2 spacecraft, in the early 1980s, found auroral emissions confined to a circumpolar ring.

(Bottom) - For comparison, this is a visible-light color composite image of Saturn as seen by Hubble on December 1, 1994. Unlike the ultraviolet image, Saturn's familiar atmospheric belts and zones are clearly seen. The lower cloud deck is not visible at UV wavelengths because sunlight is reflected from higher in the atmosphere.

Credits: J.T. Trauger (JPL), J.T. Clarke (Univ. of Michigan), the WFPC2 science team, and NASA

Copyright © 1995-2016 by Calvin J. Hamilton. All rights reserved.