Home | Site Map | What's New | Image Index | Copyright | Posters | ScienceViews | Science Fiction Timelines |

PHOTO INDEX OF
PRIMARY TARGETS
ASTEROIDS
COMETS
EARTH
JUPITER
KUIPER BELT
MARS
MERCURY
METEORITES
NEPTUNE
OORT CLOUD
PLUTO
SATURN
SOLAR SYSTEM
SPACE
SUN
URANUS
VENUS
ORDER PRINTS

OTHER PHOTO INDEXES
ALL TARGETS
PHOTO CATEGORIES

SCIENCEVIEWS
AMERICAN INDIAN
AMPHIBIANS
BIRDS
BUGS
FINE ART
FOSSILS
THE ISLANDS
HISTORICAL PHOTOS
MAMMALS
OTHER
PARKS
PLANTS
RELIGIOUS
REPTILES
SCIENCEVIEWS PRINTS

Mercury's Internal Magnetic Field

Target Name:  Mercury
Spacecraft:  MESSENGER
Produced by:  NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Copyright: NASA Copyright Free Policy
Cross Reference:  PIA10380
Date Released: 2008-01-30

Related Documents
Download Options

NameTypeWidth x HeightSize
PIA10380.jpgJPEG800 x 54081K
PIA10380.jpgJPEG1500 x 1013236K
PIA10380.jpgJPEG3000 x 2025540K
PIA10380.tifTIFF3000 x 20251M

This depiction of a simulated Mercury magnetosphere shows representations of the distortions of the planetary magnetic field lines (blue) by the solar wind. Mariner 10 data showed the first evidence for a magnetic field at Mercury, an unexpected result. The equatorial pass of MESSENGER during quiet solar conditions provided better data than were available from Mariner 10.

MESSENGER saw an internal magnetic field that is well described by the field from a dipole nearly aligned with the planet's spin axis (dipole tilt ~ 10°). This geometry is similar to that observed by Mariner 10 during its first flyby. The field strength is weaker by about one third than that detected by Mariner 10 during its third (and last) flyby, owing primarily to the difference in trajectories (Mariner 10 flow directly over the magnetic pole where the field strength is greatest). When corrected for our best estimate for the external field, the MESSENGER observations and the two Mariner 10 passes are consistent with very similar solutions for the mean planetary magnetic dipole. The dipolar field is consistent with an active electrical dynamo in which the magnetic field is produced by electrical currents flowing in an outer core of molten metal. The observations do not yet allow us to identify whether a small secular variation may have occurred, determine higher order structure in the field, or assess whether crustal magnetic signatures may be present at other longitudes. A combination of the next two flybys and the orbital phase of MESSENGER's mission will be required to sort out all of these possible effects.

Copyright © 1995-2016 by Calvin J. Hamilton. All rights reserved.