Home | Site Map | What's New | Image Index | Copyright | Posters | ScienceViews | Science Fiction Timelines |

PHOTO INDEX OF
PRIMARY TARGETS
ASTEROIDS
COMETS
EARTH
JUPITER
KUIPER BELT
MARS
MERCURY
METEORITES
NEPTUNE
OORT CLOUD
PLUTO
SATURN
SOLAR SYSTEM
SPACE
SUN
URANUS
VENUS
ORDER PRINTS

OTHER PHOTO INDEXES
ALL TARGETS
PHOTO CATEGORIES

SCIENCEVIEWS
AMERICAN INDIAN
AMPHIBIANS
BIRDS
BUGS
FINE ART
FOSSILS
THE ISLANDS
HISTORICAL PHOTOS
MAMMALS
OTHER
PARKS
PLANTS
RELIGIOUS
REPTILES
SCIENCEVIEWS PRINTS

Dust Rings Around Stars - Context Picture

Target Name:  HR 4796A, HD 141569
Spacecraft:  Hubble Space Telescope
Instrument:  Near Infrared Camera and Multi-Object Spectrometer
Produced by:  NASA
Copyright: Copyright Free
Cross Reference:  STScI-PRC99-03
Date Released: 8 January 1999

Related Documents
Download Options

NameTypeWidth x HeightSize
dustring.jpgJPEG800 x 56771K
dustring.jpgJPEG3000 x 2400276K

[left]
A striking NASA Hubble Space Telescope near-infrared picture of a disk around the star HD 141569, located about 320 light-years away in the constellation Libra. Hubble shows that the 75 billion-mile wide disk seems to come in two parts: a dark band separates a bright inner region from a fainter outer region. The structure superficially looks much like the largest gap in Saturn's rings - but on a vastly larger scale.

The Hubble image, taken at a wavelength of 1.1 microns, was made using the coronagraph in the Near Infrared and Multi-Object Spectrometer (NICMOS) to reduce the glare of the star. The observed radiation from the disk is caused by dust particles which reflect the light of the central star.

The dark spikes in the image are regions where there are no useful data due to diffraction artifacts introduced by the optical systems of the telescope and camera. The central portion of the disk remains unseen because of residual glare from the bright star.

Credit: Alycia Weinberger, Eric Becklin (UCLA), Glenn Schneider (University of Arizona) and NASA

[right]
A NASA Hubble Space Telescope near infrared image of a novel type of structure seen in space - a dust ring around a star. Superficially resembling Saturn's rings -- but on a vastly larger scale -- the "hula-hoop" around the star called HR 4796A offers new clues into the possible presence of young planets.

The near-infrared light reflecting off the dust ring is about 1,000 times fainter than the illuminating central star.

Astronomers used a coronagraphic camera on Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), specifically designed to enable observations of very faint and low surface brightness objects in the close proximity to bright stars. Even with the coronagraph, the glare from HR 4796A overwhelms the much-fainter ring at distances less than about 4 billion miles (inside the blacked-out circle, centered on the star).

Hubble's crisp view was able to resolve the ring, seen at lower resolution at longer wavelengths, in ground-based thermal infrared images, as a disk with some degree of central clearing. The ring has an angular radius of 1.05 arc seconds, equivalent to the apparent size of a dime seen more than 4 miles away.

Unlike the extensive disks of dust seen around other young stars, the HR 4796A dust ring, 6.5 billion miles from the star, is tightly confined within a relatively narrow zone less than 17 Astronomical Units wide. An Astronomical Unit is the distance from the Earth to the Sun). For comparison, the ring width is approximately equal to the distance separating the orbits of Mars and Uranus in our own Solar System. All dust rings, whether around stars or planets, can only stay intact by some mechanism confining the dust, likely the gravitational tug of unseen planets.

The image was taken on March 15, 1998, centered at a near infrared wavelength of 1.1 microns. The ring, which is undoubtedly circular, appears elliptical since it is inclined to our line-of-sight. Thus, the apparent spacing of the ring-particles, which act as reflectors of starlight, is greatest at the ansae of the projected ellipse giving rise to the brightening in these regions.

Credit: Brad Smith (University of Hawaii), Glenn Schneider (University of Arizona), and NASA

Copyright © 1995-2016 by Calvin J. Hamilton. All rights reserved.